Solving the radiation equation

Charles Xie

Heat can transfer at the speed of light through radiation. The Stefan-Boltzmann Law describes how the power E emitted from an object depends on its temperature:

$$E = \varepsilon\sigma T^4$$

where σ is called the Stefan constant, ε is the emissivity (1 if the object is a perfect black body), and T is the temperature in Kelvin.

For a system that has many objects, we have to discretize every one of them into many small patches $\{dA_i\}$ in order to model their interactions. The power density given away by each patch is called radiosity (denoted by B), which is governed by the following integral equation (this is in fact an inhomogeneous Fredholm equation of the second kind1):

$$B_i dA_i = E_i dA_i + \rho_i \int \hat{n}_i B_j F_{ji} V_{ji} dA_j$$

where B_i is the outgoing power per unit area from patch i, E_i is the emission power per unit area of the patch, ρ_i is the reflectivity of the patch, dA_i is the area of the patch, F_{ji} is the view factor (dimensionless), and V_{ji} is the visibility function (0 if patches i and j cannot see each other, otherwise 1). The visibility function can be calculated using collision detection between rays and patches.

The view factor from a surface A_1 to a surface A_2 defines the proportion of the radiation leaving A_1 that ends up striking A_2. In 3D, it can be calculated through the following formula based on the etendue of a ray:

$$F_{12} = \frac{1}{A_1} \int_{A_2} \frac{\cos \theta_1 \cos \theta_2}{\pi r_{12}^2} dA_2 dA_1$$

where r_{12} is the distance between the two surfaces, and θ_1 and θ_2 are the acute angles between the surface normal and the distance vector. In 2D, it can be calculated by replacing the areas with lengths and r_{12}^2 with r_{12}:

$$F_{12} = \frac{1}{L_1} \int_{L_2} \frac{\cos \theta_1 \cos \theta_2}{\pi r_{12}} dL_1 dL_2$$

1 http://en.wikipedia.org/wiki/Fredholm_integral_equation
The net energy that converts into thermal energy at a patch comes from the difference between the portion of energy reflected from all other patches that becomes absorbed by the patch and the energy that it emits:

\[Q_i dA_i = \alpha_i \int \sum_{j} B_j F_{ij} V_{ij} dA_j - E_i dA_i \quad (4) \]

where \(\alpha_i \) is the absorptivity (the ability to absorb electromagnetic radiation) of the patch’s material. This equation can be coupled with the Heat Equation and the Navier-Stokes Equation to allow radiation to interact with the flow of heat and mass.

Equations (2) and (4) can be discretized into the following matrix equations:

\[B_i - \rho_i \sum_j F_{ij} V_{ij} B_j = E_i \quad (5) \]

\[Q_i = \alpha_i \sum_j F_{ij} V_{ij} B_j - E_i \quad (6) \]

Equation (5) can be solved using a relaxation method, such as the Gauss-Seidel method,\(^2\) using the emission power at each patch as the initial guess. In a transient simulation, only a few relaxation steps are needed as the time-dependent solution is already somehow iterative.

The thermal power generated at each patch \(Q_i \) can then be derived using Equation (6).

\(^2\) http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method