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Computer-aided design (CAD) logs provide fine-grained empirical data of student activities for assessing learning in

engineering design projects. However, the instructional sensitivity of CAD logs, which describes how students respond to

interventions withCADactions, has rarely been examined. For the logs to be used as reliable data sources for assessments,

they must be instructionally sensitive. This paper reports the results of our systematic research on this important topic. To

guide the research, we first propose a theoretical framework for computer-based assessments based on signal processing.

This framework views assessments as detecting signals from the noisy background often present in large temporal learner

datasets due to many uncontrollable factors and events in learning processes. To measure instructional sensitivity, we

analyzed nearly 900megabytes of process data logged by our Energy3DCAD software as collections of time series. These

time-varying data were gathered from 65 high school students who solved a solar urban design challenge using Energy3D

in seven class periods, with an intervention occurring in themiddle of their design projects. Our analyses of these data show

that the occurrence of the design actions unrelated to the interventionwere not affected by it, whereas the occurrence of the

design actions that the intervention targeted reveals a continuumof reactions ranging fromno response to strong response.

From the temporal patterns of these student responses, persistent effects and temporary effects (with different decay rates)

were identified. Students’ electronic notes taken during the design processes were used to validate their learning

trajectories. These results show that an intervention occurring outside a CAD tool can leave a detectable trace in the

CAD logs, suggesting that the logs can be used to quantitatively determine how effective an intervention has been for each

individual student during an engineering design project.
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engineering design; educational data mining; learning analytics

1. Introduction

High-quality assessments of deep learning hold a

critical key to improving learning and teaching.

Their strategic importance was highlighted by Pre-

sident Obama in March 2009: ‘‘I am calling on our

nation’s Governors and state education chiefs to
develop standards and assessments that don’t

simply measure whether students can fill in a

bubble on a test, but whether they possess 21st

century skills like problem solving and critical

thinking, entrepreneurship, and creativity’’ [1].

However, the kinds of assessments that the Presi-

dent wished for often require careful human scoring

that is far more expensive to administer than multi-
ple-choice tests [2]. Computer-based assessments,

which rely on the learning software to automatically

collect and sift learner data through unobtrusive

logging [3], are viewed as a promising solution as

digital learning becomes increasingly prevalent.

Educational data mining and learning analytics [4]

represent the latest development in this field

towards the direction of big data applications [5, 6].

1.1 Instructional sensitivity and educational

assessment

While there has been a lot of work on computer-

based assessments for science education [7–11],

some of which addressed complex problem solving

skills [12–15], one foundational question remains

under-explored thus far: To what extent can the

logged learner data reveal the effect of an instruc-

tion?

There are two main categories of evidence for
determining the instructional sensitivity of an assess-

ment tool: judgmental evidence and empirical evi-

dence [16]. Computer logs provide empirical

evidence based on user data recording—the logs

themselves provide empirical data for assessment

and their differentials before and after instruction

provide empirical data for evaluating the instruc-

tional sensitivity. Like any other assessment tools,
computer logs must be instructionally sensitive [17]

if they are to provide reliable data sources for

measuring student learning. In some cases, insensi-

tivity could indicate the ineffectiveness of the learn-

ing software in translating instructional outcomes

into human–computer interactions that can be

logged and analyzed. Hence, the study of instruc-

tional sensitivity may also help learning software
developers improve their products.

Throughout this paper, we will use the term

‘‘instructional sensitivity’’ as it is commonly used

in the literature [17–20]. This does notmean that our

assessments are limited tomeasuring only the effects

of traditional instruction, however. In fact, we
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intend our theoretical framework (described in

Section 2) to cover the study of all types of inter-

ventions, including those carried out by humans

(such as teacher instruction or group discussion) or

generated by the computer (such as adaptive feed-

back or intelligent tutoring [21, 22]). In this phase of
our research,we focus only onhuman interventions.

Studying the instructional sensitivity of learner data

to human interventions will enlighten the develop-

ment of effective computer-generated interventions

for teaching complex science and engineering prac-

tices in the future (which is another reason, besides

cost effectiveness, why research on automatic

assessment using software logs is so promising).
Another important thing to keep in mind is that,

as the effect of an intervention may differ from one

student to another, the instructional sensitivity of

an assessment item is not an ‘‘either/or’’ question—

it must be gauged by statistically considering the

responses from an ensemble of students. An item

can be said to be completely insensitive if none of its

indicators shows any difference before and after the
intervention for all students, or strongly sensitive if

they all show observable differences for all students.

Between these two extremes, an item should be

generally considered as instructionally sensitive if

a sizable percentage of students react to a mean-

ingful intervention. Increasing the instructional

sensitivity is the goal of both instructional materials

and assessment tools development.

1.2 Instructional sensitivity of design logs

Earlier studies have used computer-aided design

(CAD) logs to capture the designer’s operational

knowledge and reasoning processes [23–25]. Those

studieswere not intended tounderstand the learning

dynamics of engineering design [26] taking place
within a CAD system, however. Different from

them, this study addresses the instructional sensi-

tivity of CAD logs, which describes how students

react to interventions with CAD actions. This is a

complex, dynamical learning process that involves

the interactions among students, instructors, tools,

and artifacts.

The study of instructional effects on design beha-
vior and performance is particularly important,

viewing from the perspective of teaching science

through engineering design [27–30], a practice now

mandated by the newly established Next Genera-

tion Science Standards of the United States [31, 32].

A problem commonly observed in precollege engi-

neering projects is that students often reduce engi-

neering design challenges to construction or craft
activities that may not truly involve the practice of

science [33, 34]. This suggests that other driving

forces acting on learners, such as hunches and

desires for how the design artifacts should look,

may overwhelm the effects of instructions on learn-

ing and using science in design work. Hence, the

research on the sensitivity of design behavior to

science instruction requires careful analyses to

detect the changes. The insights obtained from

studying this instructional sensitivity may result in
the actionable knowledge for developing effective

instructions that can reproduce or amplify those

changes.

Thiswork is based on a time seriesminingmethod

[35, 36] that we have recently developed to collect

and analyze large process data generated by stu-

dents through using our Energy3D CAD software

(http://energy.concord.org/energy3d). Preliminary
results have been reported in an earlier paper [37].

The results have demonstrated that the process

analytics based on CAD logs can reveal various

student behavior patterns that may have profound

cognitive implications, such as iterative cycles of

inquiry and design.

2. Theoretical framework

Computer-based assessments can be viewed as

operational procedures for detecting signals from

the noisy background often present in large tem-
poral learner datasets due to many uncontrollable

and unpredictable factors and events in deep learn-

ing processes over a significant period of time. This

view leads to a useful theoretical framework that

borrows many ideas, concepts, and methods from

signal processing to inspire, guide, and organize our

research, as described in the following subsections.

2.1 A black-box approach to studying complex

learning dynamics

Our research is concerned with a student learning

science and engineering concepts and skills through

creating 3D computer models that function in

cyberspace using a modern CAD tool such as

Energy3D that supports both virtual construction

(to create structures) and virtual experimentation

(to test functions). The research subject is a complex

dynamical system comprising three interacting sub-
systems: the learner, the CAD tool, and the arti-

facts, which are connected through the design loop

(Fig. 1). Each subsystem has its own governing

rules. For example, the learner is motivated by

various factors such as prior knowledge and perso-

nal interest, the user interactions with the CAD tool

are determined by its user interface, and the design

artifacts are created to meet the specifications.
Each learner has some degree of inertia and

autonomy that may be opaque to researchers and

is constantly influenced by planned or random

events. Each uses the CAD tool in unique ways to

design different artifacts, sometimes unexpectedly.
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As such, the reaction to the same intervention may

vary from learner to learner or even from design to

design. In other words, the learner-tool-artifact

(LTA) system may respond to instructional inputs
with numerous possibilities that are not feasible to

enumerate or predict a priori. From the assessment

point of view, this complicated open-ended nature

of the LTA system suggests that it would be

theoretically favorable to treat it as a black box,

meaning that the system should be studied in terms

of its inputs, outputs, and transfer characteristics as

the accurate knowledge of its internal workings

cannot be exactly known (in contrast to this view,

most curricular instructions are developed with a

white box mindset that assumes students would

follow them precisely and learning would progress

as hoped).

2.2 Time series analysis

Time series analysis [38] provides an experimental

approach to studying the complex behaviors of this

black box by examining the effects of the inputs (the

interventions) on the outputs (the changes of system

behaviors after the interventions). Figure 2 shows

two hypothetical scenarios (that have been con-

firmed using student data, as discussed in later

sections).
Time series analysis in this study aims at two

goals:

1. Instructional sensitivity: The goal is to evaluate

the effects of different interventions on different

variables, such as different learners, different

processes, acquisition of different concepts and

skills, and so on.

2. System identification: The goal is to characterize

the LTA system through observing its
responses to inputs that are deliberately

designed to probe certain characteristics of the

system. The two goals have considerable over-

laps but are distinct in that the former has an

emphasis on instruction as stimuli to the system

and the latter has an emphasis on intrinsic

learning dynamics within the system. This

paper will focus on the study of instructional
sensitivity, but with system identification in the

background. This combined perspective is help-

ful because we are ultimately interested in

knowing what kinds of interventions are more
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Fig. 1. Our research subject is a dynamical system consisting of
three interacting subsystems: the learner, the tool (CAD), and the
artifacts (LTA). The learner responds to interventions and uses
the CAD tool to create or revise the design artifact. Our
intervention analysis will be based on different data sources
produced by these subsystems, as illustrated above.

Fig. 2. A schematic illustration of the effect of an intervention on: (a) the frequency of a certain type of learner action, in
which case the intervention increases the frequency of the action, and (b) the value of a certain property of the design
artifact, in which case the intervention accelerates the increasing of the value.



effective for what kinds of students working on

what kinds of projects with what kinds of tools.

3. Types of response data

The responses of different learners to an interven-

tion vary considerably. The purpose of this research

is to characterize the responses recorded in theCAD

logs (which include three types of data—student

notes, student actions, and artifact properties, as
shown in Fig. 1) and use the time series data to

investigate the following questions: (1) Susceptibil-

ity: What sub-processes are more notably changed

by the intervention? (2) Persistence: For how long

does an intervention effect last to regulate learner

behavior? (3) Variation: What students are more

responsive to the intervention?

To answer these questions, we obtain from the
time series data a response function that describes the

reaction of the learner to the intervention about a

design aspect (for a definition of the response

function, see Box 1). The shape of a response

function represents the persistence or the decay of

an intervention effect (Fig. 3).

Box 1: According to the linear response

theory widely used in physics and signal

processing, a response function Rx(t)

describes the susceptibility of a variable x of

a dynamical system to an intervention:

xðtÞ ¼
Z t

�1
Rxðt� �ÞIð�Þd�

where x(t) is the time series of the studied

variable and I(�) is the intervention function.
In the case of an impulse input, I(�) = �(� – t0),
where � is the Dirac delta function that equals
zero if not at time t0, the observed time series

after the intervention time t0 becomes the

response function: Rx(t) = x(t + t0).

In the following subsections, we will discuss

possible responses to interventions from three cate-
gories of learning and design aspects.

3.1 Effects on design actions

The action category addresses how an intervention
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Fig. 3. Four possible response functions that may be derived from the time series
data: (a) gradual start, temporary effect; (b) gradual start, persistent effect; (c)
immediate start, temporary effect; and (d) immediate start, persistent effect.



alters students’ design behaviors with a CAD tool.

For example, if students are unaware of a feature, a

reminder would likely increase its use.

An important fact that we must keep in mind

when evaluating the results across the board, how-

ever, is that the data for studying the instructional
sensitivity in this category depend considerably on

the usability and capability of the software features.

The action using an easy-to-use feature may appear

more frequently in the logs than the action using an

awkward-to-use feature. The type of action that

constantly results in interesting changes in the

design artifact (such as visually dramatic changes

in the CAD software’s 3D scenes due to construc-
tion or destruction activities) may appear more

often in the logs than the type of action that does

not immediately cause significant changes on the

computer screen (such as certain virtual experimen-

tations involving delicately adjusting parameters to

optimize a design iteratively or incrementally). The

advantage of time series analysis is that it allows us

to track each type of action individually. In thisway,
an action can be assessed in its own context.

The characterization of the instructional sensitiv-

ity per action type provides a picture of distribution

across the action space created by the user interface

of the CAD software. The data sources for this

category are the action time series that record the

timestamp, type, target, and parameters of the

actions taken during a design project. Some of the
data types are shown in Table 1.

3.2 Effects on design artifacts

A design artifact is the cumulative result of a

sequence of continuous design actions, but the

actions may not measure the properties and perfor-
mance of an artifact—more actions do not necessa-

rily entail higher performance. As the performance

of an artifact often represents that of its designer, it

is important to understand its instructional sensi-

tivity. The artifact category addresses how an inter-

vention changes the structures and functions of

students’ design artifacts. In our research, the time

series analysis of artifacts is performed through
post-processing the intermediate products recorded

by Energy3D. In this way, we can extract the time

series data of any artifact property that may shed

light on learning progress.

The characterization of the instructional sensitiv-

ity per artifact property provides a picture of dis-

tribution across the problem space created by the

design challenge. Effective interventions around a

design aspect should result in improvements of the

corresponding artifact properties (but not others)
over time.

3.3 Effects on design thinking

A unique feature of Energy3D is that it enables

students to take electronic notes to report their

(simulated) experimental results with their designs,
record the data, and document their rationales at

each design step. These notes are saved automati-

cally and synchronously to thedesign intermediates.

In the meantime, their compilation processes are

logged in a mechanism similar to tracking changes

in a word processor. These features record a trajec-

tory of design thinking, expressed in words, in

parallel with design actions. In our classroom
study, we required students to take notes diligently

as this practice would give them opportunities to

reflect on their own designs. These notes provide

invaluable data sources to probe what students

thought, as opposed to what they did—which were

captured in the action and artifact time series. The

documentation category addresses howan interven-

tion may affect students’ design thinking processes.
For example, did the usages of certain science key-

words in thedocumentation increase as a result of an

instruction on using science concepts in design?

4. Research settings and design

4.1 The research participants

Sixty-eight 9th graders (27 boys and41 girls) in three
physics classes (E, F, and G) at a high school in

Massachusetts, where the state education standards

mandate engineering contents be incorporated in

the science curriculum [39], participated in this

research in June 2013. Each student used a note-

book computer to run Energy3D and worked

individually in the classroom. The project took

seven class periods (approximately 45 minutes per
period) to complete.After all the datawere collected

and cleaned, 65 out of the 68 students were deter-

mined to have produced sufficiently complete data

for analyses.
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Table 1. Some examples of action data

Action classes Data expressions Examples

Add/remove an element {x} {Add Wall}, {Remove Roof}
Revise an element {x} {Edit Wall}, {Move Building}, {Undo}
Toggle a Boolean state <x> <Heliodon>, <Solar Map>, <Shadow>
Set a value [Attribute: x] [Camera: (–47, 22, 54) (0.98, 0.15, 0.05)], [Time: 6/30:11]
Write a note [Note: x] [Note: 787]



4.2 The Solar Urban Design Challenge

The Solar Urban Design Challenge [40] requires

students to consider solar irradiance as it varies over

seasons and locations [41–43] and apply these con-

cepts to solve open-ended problems using two

integrated simulation tools, theHeliodon Simulator

(Fig. 4(a)) and the Solar Irradiation Simulator (Fig.

4(c)), of Energy3D. These features, similar to those
in contemporary CAD software such as Autodesk’s

Ecotect [44], distinguish Energy3D from pure com-

puter-assisted drafting activities in which students

draw structures whose functions cannot or will not

be verified or tested within the drafting software. As

such, the negative side effects of using CAD in

classrooms previously reviewed by some authors

[45], such as circumscribed thinking, premature
fixation, and bounded ideation [46], can be miti-

gated by these embedded science simulations as

their visualizations provide feedback to stimulate

iteration.

In the design challenge, students construct a

number of buildings within a square city block

surrounded by a number of existing buildings of

different heights (Fig. 4(b)), with the goals of
exploiting solar energy to achieve energy efficiency

of the new construction. To save time, students need

not add windows as it is assumed that the window

areas are proportional to the wall areas of the

buildings. Each student is required to consider

alternatives and create at least three different

design solutions, from which he or she picks one

to represent his/her final design. The complexity of
this design problem stems from three aspects:

1. the inter-building shadowing among the new

buildings and the existing buildings (unmodifi-

able);

2. the intra-building shadowing of the new build-

ings that depends on their own shapes;
3. seasonal differences in the Sun path between

summer and winter situations.

Students must use systems thinking to take all these

factors into account and make trade-off decisions

among multiple competing variables. Simulations

that provide quantitative results are essential for
students to make design choices.

4.3 The intervention

In earlier classroom trials of the Solar Urban

Design Challenge, we observed that many students

spent much more time on designing unique build-
ing shapes rather than exploring solar irradiation—

even though the specifications explicitly include

requirements for solar energy performance. Solar

design in this study is critically important because it

is this step that provides opportunities to learn

about the iterative cycle of engineering design

through data-driven scientific inquiry using the
built-in simulators. Students will not fully attain

the learning goals if they underperform in the solar

design tasks. Because of this importance, we

arranged an intervention that intended to steer

the students to the right track in the middle of

the project. In this way, the instructional sensitivity
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Fig. 4 (a) The user interface of Energy3D with the Heliodon
Simulator open in the scene to visualize the Sun path at a given
location and time; (b) the SolarUrbanDesignChallenge requires
students to design a city block to meet a set of criteria and
constraints; (c) the heat map of daily solar irradiation on the
surfaces of some structures in a dense urban area generatedby the
Solar Irradiation Simulator.



of CAD logs can be examined in the context of the

so-called ‘‘design-science gap’’ [34, 47], a problem

that frequently fails science learning in design

projects.

This intervention was a 10-minutes lecture by one

of the authors (SN), given about two class periods
after the students started the project. The lecturer

demonstrated the applications of the simulators. He

explained how the solar energy input may depend

on the path of the Sun in the sky as well as the shape

of the building and its location relative to others. He

also discussed the interpretation of a solar irradia-

tion heat map generated by Energy3D. Before his

intervention, all students had finished their first
designs. Hence, the differences between the first

design and the subsequent ones can be used to

measure the instructional effect.

It is noteworthy that, although the teacher was

present in the classroom all the time and had

certainly intervened in many ways, SN’s instruction

was the only intervention regarding solar design.

The teacher’s interventions can be considered as
other driving forces as depicted in Fig. 1.

4.4 Data intensity and quality control

Students’ actions were logged every two seconds

(if an action had occurred). Thus, action logs may

contain a total of 3,000–5,000 lines of data. Stu-

dents’ intermediate artifacts were logged less fre-
quently—every 20 seconds if there was any change

to the current CAD model. Thus, an artifact log

folder may contain a total of 300–500 intermediate

files. The data collected from the students add up to

nearly 900 megabytes. More than 20 megabytes of

datawere recorded from themost active student. To

analyze this sheer volume of process data, a visual

analytics program was written in Java to automati-
cally process the datasets and visualize the results

with graphs so that researches can rapidly identify

patterns and trends.

To control the quality of the process data, it is

important to minimize the side effect of the learning

curve of the tool. As with any other tool, there is a

learning curve for Energy3D, however simple and

intuitive its user interface may be. Our strategy to
confine this side effect was to begin the project by

giving a real-time demonstration that covered the

basics of Energy3D. Students were then given 30

minutes to learn and explore the tool freely before

working on the Solar Urban Design Challenge.

Only after they started to work on the challenge

were the processes logged. This reduced some

random exploratory data not pertinent to solving
the challenge. To ensure that the data collectionwas

not interrupted by possible Internet connection

problems, each student was given a USB drive

onto which all the learner data were stored.

5. Temporal data patterns

In this section, we will focus on analyzing a number

of selected students and discussing the temporal

patterns in their data. These students were selected

on the basis that the temporal patterns of each one

of them represent a class of design behavior.

5.1 Instructionally sensitive actions

Among many different types of design actions, we

chose to study a subset that is most critical to the

design challenge. For instance, site layout has a big

impact on solar heating in buildings, as neighbor-
ing tall buildings can block the sunlight in different

ways at different times [43, 48]. As the Sun moves

differently in the sky in different seasons, a layout

may have different solar energy gains in the winter

and summer. The existing buildings in the provided

template (Fig. 4(b)) were carefully designed such

that the southwestern and southeastern parts of the

city block are the best locations to erect the
required skyscrapers that can yield optimal solar

heating in both winter and summer situations.

However, this was not disclosed to students and

cannot be seen without careful analysis using the

simulators. To discover an energetically favorable

layout, students have to frequently move the build-

ings around to experiment with many different

layouts in order to find an optimal solution that
is satisfactory for both winter and summer, based

on evaluating the simulation results of the solar

heating of all the new construction in those layouts

(Fig. 4(c)). If the logs show no action of moving

buildings, it is almost certain that the student did

not consider site layout and it can be concluded

that he or she did not accomplish the learning

goals. Hence, the instruction stressed the impor-
tance of moving buildings.

Of all the four temporal patterns hypothesized in

Fig. 3, two of them were unambiguously identified

from the student data. Figure 5 shows two response

functions that can be categorized as Pattern (c)

(immediate start, temporary effect), but with differ-

ent decay rates. In the case shown in Fig. 5(a), the

intervention effect lasted only for the remainder of
the class period immediately following the interven-

tion. No {Move Building} action was logged in the

subsequent two class periods. In the case shown in

Fig. 5(b), the occurrence of the {Move Building}

action gradually diminished in the following three

class periods. In both cases, no {Move Building}

action was ever recorded before the intervention.

Figure 6 shows two examples of Pattern (d)
(immediate start, persistent effect) that logged over

100 {Move Building} actions. In both cases, the

solar irradiation heat map was turned on at every

move, indicating that the students might be experi-
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mentingwith the solar layouts (if the heatmap is not

shown, moving a building will not result in any

visible change with regard to solar irradiation that

will elicit further experimentations).

Patterns (a) and (b) with a gradual start were not

evident in the action data. This makes sense because

the {Move Building} action requires no effort to

master—informed students can immediately resort

to actions upon instruction. A pattern of gradual

start may bemore likely to be found from the data if

the action command requires some initial effort to

learn.
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(a)

(b)

Fig. 5. The fast (a) and slow (b) decay behaviors (Pattern (c) in Fig. 3) from the time series
graphs of the {Move Building} action for two students E5 and G4. The light gray bands
separated by white gaps represent different class periods. The black vertical bar in the middle
represents the intervention event. The array of small color rectangles near the top edge
represents the sequence and transition of files students worked on. A tiny white dot in the
middle of a histogram bar indicates that the solar irradiation heat map was generated in that
event.



5.2 Instructionally insensitive actions

It is also interesting to examine the temporal pat-

terns of the actions that are not sensitive to the
intervention. Figure 7(a) shows that the action

density of rotating the 3D view (a basic action in

all 3D software) before and after the intervention,

not surprisingly, had no apparent difference for

student E15. Figure 7(b) shows that the action

density of editing walls of student G17 was not

affected by the intervention, either. The exact

definition of action density will be introduced in
Section 6.1.

5.3 Instructional sensitivity of artifact performance

Weexamined the relationship between performance

improvement of design artifacts and the interven-
tion. This subsection presents two interesting cases

in which the process data show that the students

went through iteration between winter and summer

simulations (more on this design aspect in Section 7)

and arrived at their optimal solutions. Both stu-

dents discovered that a tall building with a larger

south-facing side and smaller west/east-facing sides

receive more solar energy in the winter and less in
the summer (more in Section 7). Figure 8 shows all

the milestone designs of the two students.
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(a)

(b)

Fig. 6. Two examples of Pattern (d) that show the persistent effect of the intervention. For an
explanation of the visual elements in these graphs, see Fig. 5.



A challenge for time series analysis of artifacts is

that the results must accurately reflect the evolution

of artifact performance. This requires that the

automatic analysis incorporates data mining rules

based on disciplinary knowledge. For example, in

order to visualize these students’ design trajectories,

we calculated the following weighted aspect ratio
that characterizes their design rationale:

S ¼
XN

i¼1
wðiÞLEW ið Þ

LNS ið Þ ;wðiÞ ¼
H ið Þ

PN
j¼1HðjÞ

;

where N is the total number of new construction

in the block, LEWðiÞ is the length of the i-th

building along the east-west direction, LNSðiÞ is

the length of the i-th building along the north-

south direction, HðiÞ is the height of the i-th

building, and wðiÞ is the weight factor that repre-
sents the contribution of the height of the i-th

building among the new construction. A taller

building has a larger contribution to the overall
solar performance. In the cases of the two stu-

dents, the increasing trend of the S-factor, as

shown in Fig. 9(a), indicates that their optimiza-

tions were on the right track.

The average daily solar energy density over all the

newbuildings is another performance indicator that

can be calculated from these students’ artifacts:
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(b)

Fig. 7. (a) The action density of rotating the 3D view was not affected by the intervention, (b)
neither was the action of editingwalls. Different fromhistograms in (b) and previous graphs in
Figs 6 and 7, graph (a) is a density plot in which a thin vertical line of a fixed height is drawn
wherever there is an event.



� ¼ 1

N

XN

i¼1

E ið Þ
V ið Þ ;

whereE(i) is the total solar energy radiated onall the

surfaces but the roof of the i-th building and V(i) is
its volume. Figure 9(b) shows the evolution of

average daily energy densities in the winter and in

the summer over the four milestone designs. The

results show steady improvements of solar perfor-

mance after the intervention in both cases. G3’s

solar design outperformed G8’s because her S-

factor was greater.

6. Population data patterns

In education practices, no instruction has exactly

the same effect on different students. The statistics

of student data often reveals a continuum of

responses to the same instruction. This section will

present our findings based on the data from the 65

students.
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Fig. 8. The first row are the designs of students G3 and the second row are those of G8. Designs G3-1 and G8-1 were created before the
intervention. G3-4 and G8-4 were picked by the students as their best designs.

(a) (b)

Fig. 9.The trends of solar optimization in the data fromG3 andG8 show that the interventionmay have boosted the performance of their
designartifacts, conforming to thepattern illustrated inFig. 2(b). (a)TheS-factor (defined inSection5.3); (b) the averagedaily solar energy
density radiated on the new construction.



6.1 Changes of action densities

One attribute of the data that characterizes the

change of a design behavior due to the intervention

is the ratio of the action density after the interven-

tion to the action density before the intervention:

r Að Þ ¼ NafterðAÞ
�
Tafter

NbeforeðAÞ
�
Tbefore

;

whereNafterðAÞ is the number of times action Awas

recorded after the intervention, NbeforeðAÞ is the

number of times action A was recorded before the

intervention, Tafter is the length of time after the

intervention, and Tbefore is the length of time before

the intervention. There are a few special cases for

calculating this ratio:

1. WhenNbeforeðAÞ ¼ 0 andNafterðAÞ > M, r(A) is

infinity, but in our calculation, the result is set to

a number much larger than the rest of the data

(such as 10) to make it outstanding. The para-

meter M is the minimum number of recorded

actions for them to be considered as non-

random data. M was chosen to be 20 in this
study.

2. WhenNbeforeðAÞ ¼ 0 andNafterðAÞ < M, r(A) is

set to –1.

3. WhenNbeforeðAÞ 6¼ 0 andNafterðAÞ < M, r(A) is

set to 0.
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(a)

(b)

Fig. 10. (a) The distribution of the ratios of post/pre-intervention action densities for four types
of actions across 65 students. (b) The same graph without the {Move Building} data showing a
magnified view of the insensitive data that fluctuate around one (which corresponds to a totally
insensitive case).



r(A) = 1 indicates that the instruction had no effect

on the design behavior, r(A) > 1 indicates that the

instruction had a positive effect, and r(A) < 1

indicates that the instruction had a negative effect.

The ratio r(A) has an additional meaning that is

significant—the sum
P

A rðAÞ also measures the
change of design activity over time. Typically,

students are more likely to be engaged at the

beginning of a project. Hence, the post-intervention

action densities could be lower than the pre-inter-

vention ones as the intervention in our case occurred

in the middle of the project. If a student had lost

interest in pursuing the design project and became

inactive later, the r(A)’s and their sum would be
likely to be lower than one. In the opposite case,

large r(A)’s indicate lasting effects of engagement,

which, in turn, translate into high fidelity of the

learner data (in general, the fidelity of computer logs

decreases rapidly when students are disengaged).

Figure 10 shows the distribution of the ratios of

four types of actions, ‘‘Rotate View,’’ ‘‘Edit Wall,’’

‘‘Add Wall,’’ and ‘‘Move Building,’’ across the 65
students. The first three types were the most

common actions in the data. Just as expected, the

data fluctuate around one for the first three types of

actions, because in practice they have little to no

correlationwith the intervention (seeFig. 10(b) for a

clearer view of this fluctuation). The fact that many

data points from the first three types of actions are

close to onehighlights the statistical reliability of the
temporal data. For instance, as students must con-

stantly rotate the view in order to work in the 3D

space, the action should not change dramatically as

they move forward (unless they were disengaged in

the later stage of the project). This consistency is

confirmed for most students and can be seen in Fig.

10(b).

Figure 10 also illustrates the importance of
instructional sensitivity of an assessment item. For

example, as the ‘‘Edit Wall’’ or ‘‘Add Wall’’ action

data are not susceptible to the instruction on solar

design, they probably should not be used to assess

student performance on solar design.

6.2 t-test results of action density changes

Another way to investigate the changes of action

densities due to the intervention is to run a t-test that

compares the ratios of the number of a target action

against the total number of actions before and after

the intervention. The results show that there is a

highly significant difference for the {Move Build-

ing} action: t(64) = 5.02, p < 0.0001, with an effect
size d = 0.62. In comparison, t(64) = –1.93, p = 0.06

for the {AddWall} action and t(64) =–3.15, p<0.01

for {Edit Wall} action, indicating that they are not

as statistically significant.

6.3 A continuum of responses

For the ‘‘Move Building’’ action, Fig. 10 shows that

26 students responded to the instruction (r = 10), 20

students did not respond at all (r � 0 ), and the rest

were in the middle (these include four students

whose r values are close to zero, meaning that

their action densities of {Move Building} actually

decreased after the intervention). This distribution
suggests that the instructional outcome is not an on/

off variable—it is a continuum ranging from no

effect to strong effect as pointed out byPopham [18].

To visualize Popham’s continuum, we computed

the following quantity:

Q Að Þ ¼ rðAÞNafterðAÞ:

TheQ value distinguishes those data points that fall

into special case (1), discussed in Section 6.1. Figure

11 shows the distribution of student number as a
function of the Q value, revealing a wide range of

degrees to which students reacted to the interven-

tion.

6.4 Distribution of response patterns

The distribution of the ratio of post/pre-interven-

tion action densities defined in Section 6.1 is a time
average of the instructional effect and does not

depict a statistical picture about the temporal

shape of the data, such as Patterns C (temporary

effect) and D (persistent effect) described in Section

5. To complete the picture, Figure 12 shows the

distribution of the patterns. Among the 65 students,
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Fig. 12. The distribution of patterns among 65 students.

Fig. 11.A continuum of instructional effect constructed from the
‘‘Move Building’’ action data from 65 students.



38% did not respond to the intervention. Pattern C

was the most common behavior among the

responding students—accounting for 34% of the

students. Pattern D was found from a smaller

number of students—accounting for 22%. About

6% cannot be clearly categorized because of insuffi-
cient data.

7. Validation of the results using student
notes

To determine the accuracy of the action and artifact

data for measuring student performance, we exam-
ined the electronic notes that students took during

the design processes. This section presents two

cases.

7.1 Student G3

Figure 13(a) shows the time locations of the follow-

ing four notes taken by G3, overlaid onto her

{Move Building} time series graph.

� Note 1 (before intervention)

‘‘I first put the buildings so that there was a

courtyard in the middle that got sunlight. When

I read #2 on the directions I realized that we are

trying to get the most amount of sunlight on the

buildings in winter and least in summer. I then
had to delete the buildings I had and completely

recreate them in a different place because for

some unknown reason this program does not

have anything that allows you to move whole

buildings or walls or foundations! This was the

best place I could find where all the buildings fit

with plenty of green space and themost sun in the

winter. Also when in this position they do not cut
off sunlight for the surrounding buildings.’’

� Note 2 (after intervention)

‘‘I learned how to move around buildings!!!! This

makes life so much easier!!!!! I decided that the

two smaller buildings are stores so they don’t care

about sun but the taller buildings are apartments

so I will try tomake them have the most sun. I am

now justmovingmy buildings around to get them
the most sun in the winter and least in the

summer. I tried to make the front wall the tallest

and make the other walls shorter to lessen the

amount of sun they got in the summer but I had to

change it back because they didn’t get enough sun

in the winter.’’

� Note 3

‘‘Before just placing buildings I will look at what
area of ground receives themost light. Imade it so

that the tallest buildings were the hottest in the

winter but that made them very hot in the

summer. I decided to pretty much ignore this

fact because I didn’t want to take away heat in

the winter. I decided that they should use solar

panels to make use of all the sun they get!’’

� Note 4

‘‘I have decided to now focus on making the

numbers OK in the summer and in the winter

rather than making the numbers really good
during one season and horrible during the

other. I built the high rises so that the side that

had the most sun in the summer was very thin to

minimize the amount of sun it got. Imade the side

that got sun in the winter long and thick so that it

got the most possible sun. This did a lot to

maximize the amount of sun in winter and mini-

mize the amount of sun in the summer. I put
another tiny tall building in between the others to

get the most winter sun on that side. I made the

low rise buildings in the shade because it doesn’t

matter as much that they have sun because they

are businesses rather than living areas. I tried to

make it so that the low buildings shaded the tall

ones as much as they could in the summer but it

didn’t domuch. This is the design that I chose out
of the three because it has the best temperature as

far as hot in winter and cold in summer. I used the

most strategy when placing the buildings and it

follows the requirements the best.’’

This student’sNote 1 shows that shewas unaware of

the functionality for moving buildings before the

intervention, which explains why there was no

{Move Building} action initially. She then learned

about the functionality from the intervention and

was excited about it (see Note 2). Rather than

exploring peculiar shapes as many students did,
she spent much of her time on the solar design,

especially on searching a solution thatworks both in

the winter and in the summer. She not only moved

buildings to different locations but also changed

their shapes. The time series in Fig. 13(b) shows the

increasing use of the {Resize Building} feature after

the intervention. Figure 13(c) shows the increasing

actions of switching between summer and winter
simulations. Using the Solar Irradiation Simulator,

she discovered the importance of the aspect ratio of

a high-rise building to optimal solar heating in both

seasons. She concluded that G3-4 in Fig. 8 was her

optimal design. To summarize, the results from

analyzing her actions and artifacts match well with

her design thinking recorded in her notes.

7.2 Student G8

Figure 14(a) shows the time locations of the follow-

ing four notes taken by student G8, overlaid onto

her {Move Building} time series graph.

� Note 1 (before intervention)

‘‘While building this city complex, I made some

short, some tall, and somemedium size buildings.
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(a)

(b)

(c)

Fig. 13. (a) The time locations of the notes that student G3 took, relative to the {Move
Building} actions. The first segment of the note-taking actions was the result of a
reflection on the specifications required at the beginning of the project. Its purpose was
to test howwell students understood the design challenge. (b) The time series of {Resize
Building}, indicating that G3 used this feature frequently to reshape the buildings in
search of optimal design for both winter and summer situations. (c) G3’s actions of
switching between summer and winter simulations.
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(a)

(b)

(c)

Fig. 14. (a) The time locations of the notes student G8 took, relative to the {Move
Building} actions. (b) The time series of {Resize Building}, indicating thatG8 used this
feature frequently to reshape the buildings. (c) G8’s actions of switching between
summer and winter simulations.



I wanted to spread them out so that 20% could

still be green, open space. I just focused on having

fairly good amounts of shade in the summer and

light in the winter.’’

� Note 2 (after intervention)

‘‘To make my buildings cool in the summer I
moved them around until they had little amounts

of red and more blue and green. Then for the

winter I tried the opposite by getting as red as I

could. I tried to find a good balance between the

seasons.’’

� Note 3

‘‘On this design I put my tallest buildings in the

front [south] where the gaps were so that they
could have the most heat in the winter and the

least in the summer. Then I put the shorter longer

buildings in the back for the same reason. I think

this made for a pretty good balance for both the

winter and the summer.’’

� Note 4

‘‘For this design I was kind of just trying some

different things moving the buildings so they
would be hidden from the sun in the summer

and right in front of it in the winter. I also played

around with the thickness and thinness of build-

ings. I found that the thicker they were the hotter

they were both in the summer and the winter so

again I tried to find a balance. Then I put some

little stores in the backwhose heat doesn’tmatter.

I chose this design of the three because my main
buildings were my focus and I got a good balance

of heat in the winter and the summer. The little

stores in the back were more for visual effect and

requirements of the number of buildings but my

main buildings were places right near the front to

get a lot of sun in the winter and be mostly

blocked from the sun in the summer. This

design was more thought out than my other
ones which were more random.’’

Similar to G3, G8 correctly identified the southern

part of the city block to be the favorable area for

setting up high-rise buildings using the results from

both winter and summer simulations. This is well
articulated in her four notes and illustrated in her

final design (G8-4 in Fig. 8).

8. Discussion

Oneof the compelling reasons for usingCAD logs in

performance assessment is that their fine-grained,

temporal nature may provide more reliable, more
comprehensive, andmore personalized process data

for finding evidence of deep learning related to

problem solving and design creativity, as opposed

to pre-/post-tests that only measure the differences

between student knowledge at the beginning and at

the end or analysis of finished products that only

evaluate the final representations of student work.

However, this assessment approach brings a tech-

nical challenge—deep learning generates big data

and large datasets are difficult to analyze and

visualize. As the conceptual, curricular, and proce-
dural complexities of a learning activity increase,

such as in the cases of inquiry and design-based

learning processes, the complexity of learner data

increases. Determining the instructional sensitivity

of computer logs, which is a differential effect in the

temporal dimension, becomes even more complex.

This is a data-intensive challenge that requires some

serious computation. Ultimately, this research
direction will merge with machine learning, a

branch of artificial intelligence that creates and

studies systems capable of dynamically learning

from user-generated data [9, 49].

As an exploratory step in this direction of data-

intensive research [50, 51], we have tested the

instructional sensitivity of CAD logs to human

interventions in real classrooms. This research
approach represents a promising development in

assessment methodology and technology. The same

approach can be applied to test the instructional

sensitivity of CAD logs to computer-generated

interventions. In thisway, the effectiveness of digital

instructional scaffolding can be evaluated.

Although this research focuses on CAD for engi-

neering education, our theoretical framework and
research methodology can be readily generalized

and applied to analyze other types of learning

processes as well.

9. Conclusion

Based on nearly 900 megabytes of process data
generated by 65 high school students engaged in an

engineering design challenge, this paper demon-

strates that CAD logs are instructionally sensitive

and, therefore, can serve as an effective instrument

for assessing complex engineering design processes.

The results suggest that high-volume, high-variety

software logs can be used to detect the effects of

what happens outside the computer on individual
students. This leads to a vision of using fine-grained

software logs as alternative data recorders to cap-

ture and evaluate the effects of various kinds of

interventions that drive complex learning

dynamics. This approach is highly scalable because

computer logging happens behind the scenes and

data analysis can be automated. The proposed

theoretical framework for computerized assess-
ments based on signal processing lays a foundation

for creating adaptive feedback based on dynami-

cally analyzing learner data, which is the ultimate

goal of this research.
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