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This paper proposes a novel computational approach based on time series analysis to assess engineering design processes

using a CAD tool. To collect research data without disrupting a design learning process, design actions and artifacts are

continuously logged as time series by the CAD tool behind the scenes, while students are working on a design challenge.

These fine-grained data can be used to reconstruct and analyze the entire design process of a student with extremely high

resolution. Results of a pilot study in a high school engineering class, in which students solved a solar urban design

challenge, suggest that these data can be used to measure the level of student engagement, reveal the gender differences in

design behaviors, and distinguish the iterative and non-iterative cycles in a design process. From the perspective of

engineering education, this paper contributes to the emerging fields of educational datamining and learning analytics that

aim to expand evidence approaches for learning in a digital world.
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1. Motivation

Engineering design has been extensively incorpo-
rated in the Next Generation Science Standards for

U.S. precollege science education [1, 2]. The Tech-

nology and Engineering Literacy Framework for

the 2014 U.S. National Assessment of Educational

Progress includes engineering design as one of the

four key skills that need to be assessed at precollege

levels [3]. Researchers have developed several

assessment techniques. For instance, verbal proto-
col analysis was used to obtain data from ‘thinking

aloud’ [4, 5]. Latent semantic analysis was used to

parse design documentation to characterize

designer performance [6]. Timeline analysis was

used to monitor students’ time allocation to differ-

ent tasks and their transitions during a design

session [7, 8]. These techniques have limitations.

For example, the verbal protocol method is intru-
sive to classroom activities and is weak in capturing

non-verbal processes such as perception and intui-

tion that are so important in design [9]. Researchers

also found that students did not always put their

verbalized knowledge into design practice [10],

leaving considerable ambiguity in their perfor-

mance assessments. The document analysis

method has similar weaknesses to those of the
verbal protocol method because it, too, is based

on analyzing student descriptions of their work,

rather than their actual actions. The timeline

method was developed to visualize patterns of

time usage on different phases, but due to the lack

of detailed information about the quality of the

design subprocesses in the allocated time, time on

task does not always reflect designer performance.

A common disadvantage of these existing meth-

ods is that they all require time-consuming data

collection and analysis procedures that limit the

scale of research. These procedures are often exe-
cuted manually and the requirement of inter-rater

reliability multiplies the work load. Information

technology provides a cost-effective alternative. As

an important trend in educational research [11],

computer-based assessments have been used to

study inquiry with interactive media and games

[12–16]. But rarely have they been exploited for

assessing engineering design, a process that shares
some similarities with scientific inquiry but is fun-

damentally distinct in many ways [17]. We see an

exciting opportunity to introduce computer-based

assessments into engineering design research. This is

possible because computer-based assessments can

be implemented within computer-aided design

(CAD) tools.

Engineering design is well supported by modern
CAD tools capable of digital prototyping—a full-

cycle process to virtually explore a complete pro-

duct before it is actually built. Such CAD tools

allow students to take on a design challenge without

regard to the expense, hazard, and scale of the

challenge. They provide viable platforms for teach-

ing and learning engineering design in the class-

room, because a significant part of design thinking is
abstract and generic, can be learned through design-
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ing computermodels thatwork in cyberspace, and is

transferable to real-world situations. In cases when

closing the gap between the virtual world and the

real world is required and feasible, a CAD tool can

integrate with digital fabrication technologies, such

as 3D printers, to allow students to translate their
computer designs into physical objects for further

learning [18].

For engineering education research, the advan-

tage of moving a design project to an online CAD

platform is that learner data can be logged con-

tinuously and sorted automatically behind the

scenes, while students are solving design challenges.

This datamining technique is promising because the
logged human-computer interactions and inter-

mediate design artifacts encompass rich informa-

tion about the quality of learning processes and the

evidence of learning outcomes. In a sense, these

logged data reflect students’ design thinking and

decision making processes, which are not only

regulated by the affordances of the CAD tool such

as its user interface and visualization but are also
driven by interventions outside the CAD tool such

as brainstorming and instruction. To understand

the latter, imagine a simple scenario in which

students first carry out their design work without

any guidance, then stop for an orientation of the

project by the teacher, and then carry on their design

tasks. It is highly possible that in this case the CAD

tool would record a measurable difference before
and after the teacher’s intervention. This difference

in the data logged by the CAD tool can be used to

quantitatively study the effect of the intervention.

These logged data include non-verbal, non-tex-

tual data that augment other assessment data to

provide amore comprehensive andobjective picture

of learning. For example, to determine if and how

students practice iterative designing and systems
thinking to search for optimal solutions, we can

examine in the design logs the exact types, scopes,

time, and frequencies of data-driven inquiry actions

students have taken, the numerical results of their

investigations through simulated tests, the design

rationales students have generated based on their

interpretations of the results, the subsequent design

actions they have taken as a result of prior inquiry,
and the following system performance changes

calculated by the CAD software (which can be

displayed like game scores to students to guide

their design work, too). These kinds of process

data with a time dimension can provide evidence

of engineering design learning from the perspective

of learning progressions [19–21].

This paper is the first of a series of reports about
our work on developing, refining, and applying a

rigorous computational method for process analy-

sis with the goal to provide reliable analytics and

useful visualization for probing into engineering

design learning processes on a scale and at a depth

unimaginable before. Although this concept-prov-

ing research study involved only a small number of

high school students, this computational approach

is highly scalable and generalizable.

2. Process analytics: Theory and
methodology

In this section, we will present a theoretical frame-

work on which our research methodology will be

based. This framework considers the dynamic,

multifaceted nature of engineering design and

aims to define the assessment structures underlying

a learning progress from a beginning designer to an

informed designer [22] using a CAD tool as both an
intervention and assessment system.

2.1 A data mining mechanism based on time series

analysis

A complex engineering design process involves

many types of tasks and consists of numerous

actions that occur sporadically, progressively, itera-

tively, or even concurrently within the problem

space. A CAD tool provides deep design space

that is scaffolded by its user interface through

which students take actions to shape and test their

ideas and designs. Along with the properties and
attributes of the designed artifacts that can be

calculated dynamically by the CAD tool based on

the underlying scientific and engineering principles,

the types, timestamps, orders, frequencies, and

durations of student actions within the CAD tool

provide invaluable insights into the process of

engineering design as they accurately reflect the

learning trajectories of each student. These long-
itudinal data can be monitored and collected in the

form of time series—sequences of data points mea-

sured and stored periodically to record the states of

an ever-changing designer-design system. In this

way, an intervention will leave a measurable trace

to its full extent. Assessments can then be viewed as

the analysis of a comprehensive set of time series,

each representing an aspect of learning or perfor-
mance over a period of time (Fig. 1).

At first glance, these data may appear to be fairly

stochastic. But buried in the noisy data are students’

design cognition processes. Time series analysis,

which has been widely used in signal processing

and pattern recognition [23, 24], can be used to

detect meaningful patterns of learner behaviors

from seemingly random data. For example, auto-
correlation analysis can be used to find repeating

patterns in a subprocess. Cross-correlation analysis

can be used to examine if an intervention in one

subprocess has resulted in changes in another and
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estimate how long it has taken for an intervention to

regulate a design behavior. Of particular interest is

whether cross-correlation analysis can discern and

characterize the interplay between an inquiry pro-

cess about concept B and a design process about

feature A, both of which are responsible for the

improvement of product performance C (Fig. 1).

2.2 Evidence of design learning from big data

The emerging fields of educational data mining and
learning analytics [25] aim to expand evidence

approaches for learning and teaching in a digital

world [26]. Research in these fields should not be

limited to analyzing onlyWeb traffic data generated

in online courses such as when the student logs in,

which link is clicked, or for how long a video is

played. Tracking these generic traffic data is useful

for profiling learners, but they provide little direct
evidence of deep learning specific to content knowl-

edge or problem-solving skills. This paper repre-

sents an effort to broaden the scope of data mining

to measure students’ abilities to learn inquiry and

design in a project-based setting. It presents an

example of how evidence of learningmay be derived

from tracking student exploration directlywithin the

problem space. This type of learner data may allow
for more meaningful assessments as they are more

specifically linked to the content and skill learning

goals.

The time series process data can be as fine-grained

as the ‘atomic’ design steps (meaning that they

cannot be logically divided further) learners under-

take in the problem space, such as an action stored

in the undo/redo manager of a CAD tool, or the
changes of the individual building blocks of a

designed system, including the evolution of a phy-

sical property calculated by an analytic module of a

CAD tool. Such data can be used to reconstruct and

analyze the entire design process of every student

with extremely high resolution. Data at this level of

granularity possess all the four characteristics of

‘big data’ [27]:

� High volume: A class of highly engaged students

can generate a large amount of process data in a

complex open-ended project that involves many

building blocks and variables.

� High velocity: The data can be collected, pro-
cessed, and visualized in real time to instanta-

neously provide students with metacognitive

guidance and teachers with corrective strategies.

� High variety: The data encompass any type of

information provided by a rich CAD system such

as all the learner actions and artifact properties.

� High veracity: The data must be accurate and

comprehensive to ensure fair and trustworthy
assessments of student performance.

These big data contain a lot of information about

the quality of design processes that can yield direct,
measurable evidence of learning at a statistically

significant scale. Automation of data acquisition

and analysis will make this research approach

highly cost-effective and scalable.

3. Technology

3.1 Learning and teaching engineering design with

Energy3D

This research used a special CAD program, Ener-

gy3D (available at http://energy.concord.org/ener-

gy3d), which is a free, open-source computer-aided

design and fabrication tool that we have developed

for children of age 6–18 to make small model

buildings (Fig. 2). The program was written in the
Java programming language from scratch with the

goal to support the teaching and learning of engi-

neering design in the context of sustainable civil

engineering. Energy3D provides an easy-to-use 3D

graphical user interface for designing model green

buildings and assessing their solar energy perfor-

mances using a virtual heliodon that simulates solar

radiation at any given time in any given location.
With a What-You-See-Is-What-You-Get (WYSI-

WYG) user interface that is even more simplified

than that of SketchUp, most students are able to

master the tool in a short time (15 minutes or so)

after watching a tutorial video or a live demo and

can quickly design a simple house, a complex

building, or even a village. In addition, Energy3D

also allows students to ‘print out’ a design, cut out
the pieces, and use them to assemble a physical

model to extend learning to the real world. To

support this fabrication process, Energy3D auto-

matically deconstructs a 3D structure into 2Dpieces

and generates a layout of all the pieces on a number
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Fig. 1. Engineering design using a CAD tool consists of many
human and computing subprocesses that can be monitored as
time series.Analyzing these time serieswould reveal how students
learn engineering design frommultiple aspects and how different
subprocesses are correlated.



of pages. The entire deconstruction process is ani-

mated in the Print Preview so that the user can see

the correspondence between the 3D structure on the

computer screen and the 2D pieces on the printed

paper.

3.2 Logging and analyzing engineering design

processes with Energy3D

Unlike other CAD tools developed mostly for
engineering applications, Energy3D was developed

with a vision to provide an open experimental plat-

form that supports a wide range of engineering

education research and practices. With this vision

in mind, we have accommodated data collection in

the software architecture throughout the develop-

ment process. As a result, Energy3D is capable of

recording the full history of designer actions and a

complete sequence of product snapshots with an

unobtrusive logger that runs in the background.

These actions and snapshots can be used to recon-

struct the entire design process with all the impor-

tant details restored for analysis (Fig. 3). The

snapshots also store the zoom extent and rotation
angle, which preserve the designer’s navigation path

in the 3D design space, and can be replayed con-

tinuously just like running a slide show. Compared

with the screencast technology that records student

activities in a video format, which requires analysis

so labor-intensive that sophisticated computer

vision and image analysis software has been pro-

posed to assist the recognition of student actions
[28], the reconstructed process is native to Ener-

gy3D and can be arbitrarily and closely examined

using all the designing functionalities and learning

analytics built in Energy3D. This ability to post-

process a recorded design process to extract infor-

mation gives researchers considerable flexibility in

data mining. Special data visualization tools have

also been developed to render the complicated
analysis results from Energy3D’s logs, as will be

shown in later sections when we present our results.

4. Implementation

4.1 A solar urban design challenge

In sustainable architecture, passive solar design

refers to searching for optimal strategies to max-

imize solar heating on a building in the winter and

minimize solar heating in the summer in order to

reduce heating and cooling costs of the building. A
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Fig. 2. Energy3D: A special CAD tool for teaching and learning
engineering design in the context of building design. Energy3D
features a virtual heliodon that simulates the sunpath andpassive
solar heating.

Fig. 3. A schematic illustration of two hypothetical design scenarios in which events and
intermediates can be recorded to provide fine-grained details of the design processes. It is
shown that the designer in process B goes throughmore iterations than the designer in process
A.



solar design challenge is a typical optimization

problem that requires many important steps of
engineering design to solve, such as analyzing

data, considering constraints, making trade-offs,

and optimizing solutions.

For urban design, site layout has a big impact on

passive solar heating in buildings as neighboring tall

buildings can block lowwinter sun [29]. Energy3D’s

heliodon tool can compute, visualize, and analyze

solar radiation in obstructed situations commonly
encountered in dense urban areas.

The urban design project administered in this

study challenges students to use Energy3D to con-

struct a square city block surrounded by a number

of existing buildings of different heights (Fig. 4),

with the goals and constraints stated in Table 1. The

existing buildings, which cannot be modified by

students, serve as a type of constraint for the
design challenge. This design challenge is an authen-

tic engineering problem as it requires students to

consider solar radiation as it varies over a day as

well as over seasons and apply these math and

science concepts to solve open-ended problems

using a supporting heliodon simulation tool. This

distinguishes it from common computer drafting
activities in which students draw structures whose

functions cannot or will not be verified or tested

within the drafting software.

This design problem is somehow similar to the

playground design challenge used in several earlier

studies on engineering design at both college and

precollege levels [7, 30–32]. For example, both

design problems require students to construct
some structures in an empty space; both use some

neighborhood settings as design constraints. The

solar urban design challenge, however, addresses

renewable energy and sustainable buildings that

many science teachers are already enthusiastically

teaching. Compared with the playground design

problem, it is alsomore closely connected to content

requirements in existing precollege science educa-
tion standards [1]. Therefore, it provides a rich,

alternative test bed for research and evaluation on

secondary engineering education.

4.2 Research subjects

The solar urban design challenge was implemented
in an engineering/technology class in a public high

school inMassachusetts, United States, where engi-

neering and technology education has been part of

the state standards [33]. The school has an enroll-

ment of over 1000 students annually. The student

population consists of 17% minority, with 11%

participating in free and reduced cost lunch pro-

grams. A total of 20 students, 4 females (referred to
as F1–F4 hereafter) and 16 males (referred to as

M1–M16 hereafter), of grade levels 10 and 11

participated in this study. All females and five of

the males are honor students. Each student was

given a notebook computer (either Windows or

Macintosh). They worked individually on the

design project for five days (one 90-minute period

and four 50-minute periods).Although this research
setting might weaken the collaborative part of

engineering learning, it ensured that each student

had a chance to learn and allowed us to track each

individual’s work.
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Fig. 4. A solar urban design for an empty city block surrounded
by existing buildings. The lower two images represent two
possible mock-up designs. The left one is considered to be a
better design.

Table 1. The goals and constraints of the solar urban design challenge

Goals Constraints

Three new constructions: (1) a high-rise office building;
(2) a high-rise apartment building; (3) a shopping area.

Open space is required.

Maximize solar access for the new buildings. The sun path in four seasons at the given location.

Minimize obstruction of sunlight to the existing buildings. The existing buildings in the neighborhood.



4.3 Instructional effects

OnDay One, the teacher introduced students to the

project and handed out instruction sheets that

explained the design project and emphasized the

specifications. The researchers gave students a brief

demo of Energy3D. Students spent about 20 min-

utes trying various features and tools of Energy3D

and getting familiar with the software. Then the
researchers briefly introduced the template with

existing neighborhood buildings that students

were expected to work on (Fig. 4). Starting from

Day Two, students worked independently on the

project. Each student was required to complete at

least three different alternative designs. At the end

of the project, they chose their best designs and

wrote a final report to explain the rationale. They
were told that they would be graded based on their

final reports. In addition, at the end of each class

period, they were required to answer a short survey

summarizing what they had achieved during the

period and what they planned to do for the next

day.

4.4 Data sources and analyses

The data sources included CAD logs, student

designs, self-reports, classroom observation notes,

and post-project interviews. Our research focused

on the time series data logged byEnergy3D, because

only this part of the data can be automatically

collected and analyzed. All the other data sources

were used in our study to contextualize and validate
the time series analysis results.

The CAD actions needed to solve the design

challenge are coded in Table 2. The building actions

include those steps that are necessary to construct a

building. The revising actions are modifications

such as reshaping a roof. In addition, students

may revisit a previous design. Such actions are

classified as switching actions.
Our analyses covered both the design products

and processes. We evaluated the best designs the

students chose based on how well they met the

specifications listed in Table 1. From the time

series, we extracted the ratio of building versus

revising actions, the number of different designs,

and the most frequently performed action for each

student. To visualize design processes, we plotted

the timelines of the design actions performed by

each student throughout the project. As this was an

exploratory study, our time series analysis was

limited to simple statistics of design actions and

artifact properties such as maxima, minima, and
averages. More sophisticated techniques such as

correlation analysis will be used in future studies.

5. Results and findings

This section presents some preliminary results of

our pilot study. These results do not necessarily

reveal the exact degree of student learning resulting

from solving the design challenge. Instead, the
research focus is how they performed over the

period of time in which their design processes had

been logged. We attempted to identify patterns of

design behaviors and occurrences of iterative cycles.

Since time series analysis is the key technique used in

this research, it may be helpful to get a sense of how

the logged time series data look like before further

discussion. Figure 5 shows two different types of
time series, one for counting student design actions

and the other for counting design elements in

artifacts, from ten students.More data are available

at http://energy.concord.org/research.html.

5.1 Level of student engagement

One of the most obvious information that CAD

logging can reveal is how well the design challenge
engages students. In a classroom with complicated

dynamics, the teacher will not be able to monitor,

track, and help each individual student. If CAD logs

from every student can be analyzed, aggregated,

and shown to the teacher in real time, it would help

the teacher respond to a student’s needsmore timely

and accurately when the student is reported to have

gone astray.
For example, Fig. 6 shows how the time series of

an engaged student (F1) differ from those of a

disengaged student (M7). The two students were

both engaged in the first day but M7 quickly lost

interest in the project and went off-task in the

following days whereas F1 maintained a consis-

tently high level of design activity (an interview
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Table 2. Coding of ‘atomic’ actions in Energy3D needed for solving the solar urban design challenge

Construct Revise Switch

b1: build a foundation
b2: build a wall
b3: build a roof
b4: build a window
b5: build a door
b6: build a floor
b8: build a sidewalk

r1: revise a foundation
r2: revise a wall (resize, delete)
r3: revise a roof (reshape)
r4: revise a window (resize, delete)
r5: resize a door
r6: revise a floor
r7: revise a building (resize, move, or add)
r8: revise a sidewalk

o1: Open another design or template



with her after the completion of the project con-
firmed that she was constantly searching for better

solutions). Similar ineffective behaviors were

observed for M5 and M6, as shown in Fig. 5. All

these behavior patterns were accurately logged by

Energy3D, enabling us to separate the participants

into two categories: ‘engaged’ and ‘disengaged.’Our

in-depth analyses of design processes focus on eight
students (F1–F4 and M1–M4) out of the twenty

students, who were identified to be highly engaged

by their design logs and confirmed by the classroom

observers. For comparison, however, we decided to

also include two disengaged students M5 and M6

throughout our analyses.
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Fig. 5. Two time series across multiple days from ten selected students (four females F1–F4 and six malesM1–M6). TheManhattan plots
represent the time series that record the number of design actions (see Table 2) taken in a sampling time window (20 seconds). The dashed
lines represent the time series that record the total number of building elements in a design, which indicates the complexity of the design.

Fig. 6. Time series analysis: A comparison of an engaged student (F1) with a disengaged student (M7). The results conform to our
classroom observations.



5.2 Gender differences in design behaviors

An important thesis for engineering design research

involves finding different learning pathways that

best support male and female students. Therefore,

gender differences in design have been extensively

studied. In a meta-analysis of 150 studies, signifi-

cantly greater intellectual risk-taking was noted in
male participants [34].Notable differences were also

found in the design work of male and female UK

students:Girls outperformed boys in reflective tasks

like investigating and evaluating ideas, whereas

boys were better at ideation and development [35].

Our analysis results of CAD logs agree with these

earlier findings. Our data suggest that there appears

to be a large gender difference in both design
products and processes. The main differences are:

(1) the male students tended to push the limit of the

software and produced complex designs that looked

‘cool’ but did not necessarily meet the design

specifications; and (2) the female students spent

more time carefully revising their designs than

building new structures and paid more attention

to design specifications. Table 3 shows the results

distilled from the design action time series.

Figure 7 shows the comparison between female

and male students from three design aspects: the

highest action density (number of actions per
minute), the maximum count of elements in a

design, and the ratio of building vs. revising actions.

The maximum number of elements in a design

approximately represents the complexity of the

design. Although a more complex design is not

necessarily a better design, it is reasonable to

assume that the complexity of a student’s design is

a rough indicator of the student’s risk-taking atti-
tude, because a complex design needs more time

investment and may be more prone to fail. The

action data (action density and building/revision

ratio) approximately measure how reflective stu-

dents might be in the design processes: A higher

building/revision ratio may indicate a more reflec-

tive process. Our results show that the female

students spent more time revising their designs
than the male students (who spent more time on

adding new elements or new features). As a result,
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Table 3. Detailed analyses of student design actions from the logged time series

Total
actions Building Revision

Ratio of building/
revision

Number of
designs

Most frequent
action

F1 393 130 259 0.50 4 r2 (revise a wall)
F2 462 163 296 0.55 6 r2
F3 325 97 228 0.43 5 r2
F4 436 202 232 0.87 7 b2 (build a wall)
M1 369 176 190 0.93 3 r2
M2 550 238 310 0.77 5 r2
M3 480 232 245 0.95 3 b2
M4 482 367 114 3.22 3 b2
M5 165 95 79 1.38 4 b2
M6 164 60 104 0.58 2 r2

Fig. 7. The comparison between female and male students in terms of: (a) highest action density (i.e. number of actions per minute), (b)
maximumelement count, and (c) the ratio of building vs. revising actions. Each line in the graphs represents a student’s data point. In each
graph, the lines for females andmales are drawn separately in two bands. The left and right bands represent the ranges of data points from
the females and males, respectively. All three graphs show a similar trend of gender difference: On average, male students inclined to
perform more actions, add more elements in a design, and spend more time on building than on revision.



the artifacts of male students appeared to be more
complex and diversified (Fig. 8).

It is interesting to note that, for this particular

group of students, this increased complexity and

diversity, however, came at the expense of failing in

meeting the specifications. Figure 9 shows the self-

picked best designs of the eight selected students.

Interestingly, none of the final designs from themale

students met the specifications listed in Table 1. For
example, in M3 and M4’s designs, most of the new

constructions were in the shadow of existing tall
buildings to the east. All of M1’s designs were huge

skyscrapers that were out of scale.M2’s final design,

on the other hand, did not include any high-rising

buildings required by the specifications. In contrast,

the self-picked best designs of the female students

observed most of the specifications. This result may

be striking, but not surprising, as it actually agrees

with previous observations [35].
Another observation is that all the four female
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Fig. 8.Afewalternativedesigns frommale students thatwere not chosenas their best designs, indicating the
variety of options these students had explored.

Fig. 9. The best designs from eight students, chosen by the students themselves from at least three different designs each student was
required to complete.



students chose their last complete designs as their

best designs whereas none of the four male students

(M1–M4) did. This means that the design processes

of the female students were somehow convergent

whereas the design processes of the male students

were somehow divergent. One reasonable explana-
tion of this difference is that, at the end of the

project, the male students were still exploring the

design possibilities so they were not sure that their

latest designs would be the best ones. The next

subsection about design iteration may provide evi-

dence of this difference from the time series data.

5.3 Evidence of design iterations

Iterationsarefundamentalsubprocesses inengineer-

ingdesign. It is the iterative cycleofdesign thatoffers

thegreatestpotential forapplyingscienceknowledge

in the classroom and engaging in engineering prac-

tices [2]. Detecting iterative cycles in student work,

therefore, is an important part of engineering per-

formance assessment. A design process without any
sign of iterations could indicate premature design

fixation [36, 37] and poor learning quality.

There are many different forms of iterations.

Students might ask what-if questions and run
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Fig. 10. Non-iterative design behavior (student M3) vs. iterative design behavior
(student F1) identified from the CAD logs and visualized in a colored timeline graph
that indicates the switching of design actions performed on different buildings. The
colors represent different buildings in the designs. The colored timelines are projections
of actions displayed in the dotted charts above onto the axis of buildings. (For full-sized,
colored versions of these images, please visit http://energy.concord.org/research.html.)



thought experiments in their minds before taking

real actions. CAD logging can only capture those

iterations that have been translated into actions. A

CAD program that provides inquiry tools to spur

the design-build-test iterative cycle [38], such as the

heliodon simulator in Energy3D, can potentially
create an abundance of opportunities for actions,

which in turn generates an abundance of student

data for research. One type of iteration in the solar

urban design challenge involves modifying multiple

buildings iteratively based on the solar interplay

among them. A modification of one building may

affect the solar heating on another and vice versa.

This kind of ‘domino effect’ in the design problem
requires students to think about their designs as a

system consisting of interacting elements, not just a

few isolated individual elements that can be handled

separately and linearly.

Figure 10 shows the compressed dotted chart

plots of design actions from two reconstructed

design processes (‘compressed’ means that we have

removed the time gaps in the graphs to render a
compact view of the timelines in order to save

space). A dotted chart shows the spread of actions

over time by plotting a symbol for each action [39].

The chart has four dimensions: The horizontal axis

shows time, the vertical axis shows action type, the

color of a symbol represents the object the action is

applied to, and the shape of the symbol represents

an alternative design solution. These high-dimen-
sional data can be projected onto a selected axis that

measures a facet or unfold a thread of the design

process, as shown in the call-out parts of the two

images in Fig. 10.

As illustrated in Fig. 10, the case of M3 shows no

iteration—the student just designed one building

after another without stopping for reflection and

investigation. In the last day of his project, he even
created an extremely complex design that had a total

of 22 new buildings, completely ignoring the design

criteria. He probably was aware that this last design

would not pass because he did not select it as his best

design. By comparison, the case of F1 shows sig-

nificant iterations in design #2 and #3. Having

gained experience and insights, she came to the

decision of what her last design #4 should be and
she did not hesitate to zero in to it, which she then

picked as her best design.

The following are the scripts transcribed from the

recorded interviews with M3 and F1, respectively,

conducted a few days after the completion of the

project. The interviews somewhat explain why there

were such differences in their design behaviors.

Interview with M3: ‘The most thing that I focused

on is this building and the windows. With the

windows on all sides of it, it will always be able to

get some sunlight, because I know the green space is

more open, and the skyscraper is over there and the

green space is on the opposite side. So in the

afternoon and middle of the day, the green space

will be under the sunlight. The skyscraper won’t

cast a shadowon the green space.’ [This student did
not mention in the course of the interview that he

had considered the interplay among buildings.]

Interview with F1: ‘I revised using the heliodon. I
moved the buildings according to the heliodon. For

example, this building is facing a different direc-

tion, so when the shadow is on, it completely blocks

one of the surrounding buildings. Also I realized

that because my building is so large, the front of it

would completely be in the shadow. So because of it,

I was able to resize it andmake it a smaller building.

So that even though there’s still a little shadow, but

it is not completely covered by the other one. Letme

showyou this. See this building is huge.Right now it

is covered because it’s in August. Then when it’s in

January, it’s not covered any more. Because of the

heliodon, I was able to see it. In the winter, it’s not

covered, but in the summer, I guess it’s OK to be

covered because it’s hot outside. You don’t want the

sun to be on the building anyways.’

6. Discussions

6.1 Future work

This paper lays out a theoretical foundation for our

future research on engineering design and raises

many new questions. For example, finding iterative

cycles is only the first step to analyze engineering

design processes. The more important question is

how to stimulate iterations formeaningful learning.

Future research on the mechanics of design itera-
tions should identify triggers that can prompt stu-

dents to revise their designs from new directions or

spurthemtoaddnewfeaturestotheirdesigns.Weare

also planning research and development that will

allow our CAD tool to capture the full cycle of

engineering design. This is possible if a CAD tool is

usedtoassistandimplementtheentiredesignprocess

that includes problem scoping, ideation, experimen-
tation, evaluation, and communication [7].

Our future goals include finding ways to: (1)

computationally gauge the extent and effect of

inquiry actions in a complex engineering design

process that involves structure-function relation-

ships and data-driven decision-making, and (2)

computationally measure the volume of the design

space explored by a designer [40] to find evidence of
the student’s development of divergent-convergent

thinking that is critical to creative designing [41]. In

the long run, these data mining techniques will

demonstrate the feasibility of automatic analysis
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of student design processes in real time, which is

important to the ultimate development of dynamic,

adaptive feedback in intelligent tutoring systems for

scaffolding the learning of engineering design.

6.2 Limitations

Time series analysis of engineering design learning

processes requires that the design challenges be
based on CAD tools. Even though we try to inte-

grate CAD extensively into the full engineering

design process, there may still be certain subpro-

cesses and aspects of engineering design that cannot

be easily supported and captured by a CAD tool,

such as the designer’s knowledge [42, 43]. It is also

legitimate to demand a way to distinguish the

learning of the CAD tool per se (especially when
the CAD tool is too complicated for students to

master in a short time) from the learning of themore

important and transferable engineering content and

skills that theCADtool is intended to teach.Despite

these limitations, the time series analysis represents

a promising step towards a more rigorous metho-

dology for performance assessments of engineering

design at large scales.
Another limitation is that user data logging is

currently not widely supported by CAD tools. This

is understandable because most CAD programs

have been developed for professional engineers to

solve engineering problems, not for educational

researchers to conduct research. This series of

work aims to explore the values of data mining

within CAD tools using our own Energy3D CAD
program as an example. The process analytics we

are spearheading could result in robust designer

modeling [44] that may eventually spur other

CAD developers to consider incorporating data

mining into their programs to increase the system

intelligence for improving user experience, boosting

user productivity, and stimulating user creativity.

7. Conclusions

This paper demonstrates that the time series analy-

sis of CAD logs can reveal student patterns and
gender differences in engineering design that have

been observed in earlier studies using traditional

assessment methods. This research technique pro-

vides potentially more reliable performance assess-

ments because aCADtool offers a highly interactive

learning environment with compelling computer

graphics that can entice students to devote more

time and explore more ramifications. For as long as
students are engaged, they will likely produce enor-

mous quantities of learning data that can be auto-

matically collected and analyzed to provide

objective evidence of learning and suggest effective

strategies to improve learning. This unique integra-

tion of computer-aided design and computer-based

assessments provides a powerful technology that

serves learning, assessment, and research goals at

the same time with maximal efficiency.
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